BankIndonesia ( BI) selaku otoritas sistem pembayaran close loop untuk memiliki izin. Bank sentral pun tengah mempersiapkan revisi Peraturan Bank Indonesia (PBI) tentang Uang Elektronik. Rancangan peraturan ini nantinya akan memuat ketentuan penerbitan uang elektronik jenis closed loop yang harus mendapat izin dari bank sentral.
ContohAplikasi Sistem Kendali Terbuka (Open Loop) dan (Close Loop) 1. Aplikasi Sistem Kendali Terbuka (Open Loop) Pada Mesin Cuci Penggilingan pakaian, pemberian sabun, dan pengeringan yang bekerja sebagai operasi mesin cuci tidak akan berubah (hanya sesuai dengan yang diinginkan seperti
2 Traffic Light 3. Mesin Cuci 4. Kipas Angin Sistem Control Close Loop Sistem control close loop (sistem kendali lingkar tertutup) adalah suatu sistem yang keluarannya (outputnya) memberikan pengaruh terhadap aksi kontrol. Sehingga kesalahan yang dihasilkan pada keluaran dapat menjadi feedback (umpan balik) ke dalam masukan sistem.
Cobakita ulas lagi contoh-contoh diatas : Kecepatan sepeda motor. Pada sinyal keluaran yang berupa kecepatan terdapat komponen v = s / t. Dimana ada komponen waktu (t). Pada proses mesin cuci. Sudah barang tentu proses mencucinya berdasarkan waktu yang kita tentukan. Pada lampu lalu lintas.
Sebagaicontoh, 2 unit excavator yang sekelas namun dengan merek yang berbeda, sangat mungkin unit yang satu menggunakan sistem open-loop, sementara unit yang lain menggunakan sistem closed-loop. Tentunya tidak ada sistem yang sempurna, masing-masing memiliki kelebihan dan kekurangannya masing-masing.
ContohAplikasi Gratis, Tutorial Web Gratis, Tutorial Mobile Gratis, Tutorial Desktop Gratis, Feel Free with us.
. 67% found this document useful 3 votes5K views19 pagesDescriptionOpen & Close LoopCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?67% found this document useful 3 votes5K views19 pagesContoh Open & Close LoopJump to Page You are on page 1of 19 You're Reading a Free Preview Pages 7 to 17 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
BY - 4/17/2015 085900 PM Apa itu Sistem Control Open Loop?Open Loop atau bisa disebut dengan Kontrol Lup adalah dimana di sistem kelauaranya tidak memberikan feedback atau kondisi kembali. Artinya dalam dunia Inverter, ketika inverter tersebut berjalan untuk menggerakan elektro motor maka inverter tersebut tidak memberikan feedback atau kondisi ke pada Human atau orang yg mengendalikanya Atau bisa saja tidak menampilkan HMI Grapic Remote Display tapi bisanya klo inverter sendiri standartnya adalah Close Loop Contoh gambar Open Loop Contohnya Sistem Kerja Mesin Cuci yang menggunakan InverterControl Mesin Cuci hanya berdasarkan waktu diamana kontrol semua mengacu pada waktu yang di open loop bekerja diamana mesin cuci ini mencuci pakaian yang nantinya di harapkan oleh pemakai itu bersih semua. Tetapi kita tidak tahu sebab mesin cuci tersebut tidak memberikan kita status atau feedback apakah semua pakaian kita bersihPadahal pakaikan kita ada yang sweeter atau jeket diamana kainya tersebut tebal jadi pasti to yang tebal tidak akan tercuci bersih lah dari situlah open loop hanya menggunakan pengaturan di timer jika kita menggunakan close loop kita bisa menambahkan putaran pada mesin cuci tersebut agar pakaian yang tebal tersebut bisa tercuci bersih Apa itu Sistem Control Close Loop?Close Loop atau kontrol tertutup adalah diaman sistem yang mengatasi error dan protecsi yang menggunakan sensor untuk memberikan feedback perintah status untuk memperkecil error dan memperbesar protec si yang bisa membuat resiko tinggi yang membuat keluaran tersbut menjadi optimal apa yang di harapkan user atau orang yang sedang mengendalikanya intinya Close Loop tersebut memberikan umpan bali untuk memperkecil error dan memperbesar protecsi ini contoh gambarnya Contoh Inverter Untuk Menggerakan Motor Pemotong Tebu Di dalam operasional ini operator menjalankan inverter untuk menggendalikan motor dimana nanti motor tersebut untuk memotong tebuDisaat inverter menggerakan motor untuk memotong tebu maka beban motor akan bertambah naik turun tergantung beban tebu yang masuk Disini lah fungsi control close loop dimana inverter akan memberikan feedback kepada operator kalo motor itu sudah kelebihan beban maka sang operator langsung menurunkan kecepata motor tersebut agar beban yang di tanggung inverter tidak berlebihan dan akan turun seiring bebanya sudah sedikit maka sang operator menaikan lagi speed dari motor tersebut. Semoga bermanfaat Dulur...
Pada metode ke 2 atau Close loop perbedaannya dengan metode tipe 1 closes loop hanya menggunakan Kp saja, metode dibuat berosilasi secara terus menerus dengan mengatur besarnya nilai Kp. 14 Gambar 2. 13 Sistem Close Loop atau Ziegler Nichlos tipe 2 Sumber Fauziansyah, 2015 Besarnya nilai Kp ketika respon metode berosilasi secara terus menerus yaitu nilai Kcr. Dari respon yang didapatkan parameter lain dari metode close loop selain Kcr ialah Pcr. Proses menentukan parameter Pcr ditunjukan pada gambar Gambar 2. 14 Proses Desain Menentukan Parameter Pcr Sumber Fauziansyah, 2015 Sesudah mendapatkan nilai Kcr dan Pcr, selanjutnya bisa menghitung nilai Kp, Ti dan Td bisa dijumlahkan berdasarkan rumus di Tabel Tabel 2. 4 Parameter Ziegler-Nichlos close loop Tipe Pengendali Kp Ti Td P ∞ 0 PI 1/ 0 PID Pcr Sesudah menghasilkan nilai Kp, Ti dan Td maka langka selanjutnya mencari nilai Ki serta Kd. Menggunakan cara mengkonversi kan nilai Ti dan Td. Berikut rumus untuk menentukan Ki dan Kd. Ki = 2 x 𝐾𝑝 Ti 7 Kd = Kp x Td 8 15 BAB III METODOLOGI PENELITIAN Model Hardware Berikut gambar Blok Diagram pada rancangan alat Gambar Blok Diagram Berdasarkan blok diagram Gambar dengan Hidroponik NFT ini terdiri dari beberapa komponen utama. Cara kerja dari alat ini atau blok diagram yaitu sebagai berikut. 1. Input a. Sensor ph adalah input buat mengukur larutan nutrisi dan kadar ph agar sesuai yang dibutuhkan yaitu ph – 2. Proses a. Wemos D1 R2 adalah sebuah board mikrokontroler sebagai pengelola data dan mengirim data device. b. Logika PID adalah logika atau metode yang digunakan untuk menggerakan akuator servo. 3. Output a. Pompa air berfungsi mengalirkan air atau larutan nutrisi kedalam pipa Hidroponik. 16 b. Motor DC berfungsi menjadi alat buat mengaduk campuran nutrisi hidroponik. c. Relay berfungsi buat memutuskan atau mengalirkan aliran listrik kepada Motor DC dan Pompa air pada keadaan tertentu. d. Servo 1 & 2 digunakan untuk mengatur larutan nutrisi yaitu basa dan asam buat menstabilkan ph larutan nutrisi di hidroponik. e. MQTT berfungsi sebagai mengirim data ke device seperti contoh Handphone. 4. Monitoring a. Lcd 16 x 2 berfungsi sebagai menampilkan hasil dari keseluruan proses. b. Modul RTC berfungsi sebagai pengatur waktu ketika pengambil data c. Modul SD card berfungsi sebagai penyimpan data keseluruhan. Perancangan Skematik Berikut gambar perancangan skematik pada rancangan alat. Gambar Rangkaian Skematik 17 Dari Gambar 3 .2 menunjukan desain rangkaian skematik dari perancangan komponen untuk membuat alat “Rancang Bangun Sistem Hidroponik NFT Pada Pembibitan Tanaman Stroberi”. Terdiri dari beberapa komponen penting yaitu. 1. Sensor ph Model Perancangan Gambar merupakan model perancangan dari Hidroponik Nutrient Film Technique NFT untuk pembibitan stroberi. NFT Nutrient Film Technique merupakan salah satu dari metode Hidroponik yang memakai Film atau lapisan nutrisi dangkal yang dialirkan melalui akar secara terus menerus agar mendapatkan nutrisi oksigen dan air yang cukup bagi tanaman stroberi. Ada beberapa komponen yaitu pipa PFC, bak air dan pompa air. Rancangan ini memiliki 4 tingkatan untuk menempatkan tanaman pada pipa PFC, kemudian ada bak air yang dimana berfungsi sebagai penampung larutan nutrisi hidroponik NFT. Pompa air sebagai 18 sirkulasi campuran nutrisi yang tertampung pada bak menuju ke pipa hidroponik NFT. 1. Pompa 2. Motor Pengaduk 3. Sensor ph 4. Hidroponik NFT Nutrient Film Technique Gambar Model Perancangan Sistem PID Pengendali PID pada Tugas Akhir ini berfungsi sebagai mengontrol parameter air ph atau larutan nutrisi pada hidroponik NFT. Sensor yang digunakan adalah Sensor ph sebagai input dengan range ph 5,8 – 6,4 yang akan dikontrol oleh sistem PID membutuhkan nilai Kp, Ki, dan Kd. Sesudah proses pengaturan, sensor ph akan menerima kembali berupa nilai ph jika ph kurang dari 5,8 maka servo 1 akan menambahkan larutan ph up Basa agar ph stabil, jika ph lebih dari 6,4 maka servo 2 akan menambahkan larutan ph down asam agar ph stabil. Gambar Logika PID 19 Flowchart Flowchart merupakan serangkaian logika sebuah sistem. Ada 2 serangkaian logika yaitu kontrol sistem & fungsi PID. Kontrol Sistem Gambar Flowchart Kontrol Sistem Dari Gambar 3 .5 menjelaskan Algoritma dari control sistem. Diawali dengan insialisasi variabel yang digunakan. Sensor ph akan membaca nilai setelah itu akan diproses oleh PID logic. Nilai dari PID akan mengatur pergerakan akuator servo 1 & servo 2 untuk mengstabilkan kondisi larutan nutrisi mengatur asam Servo 1 atau basa Servo 2. Jika kondisi ph kurang atau kondisi lebih dari maka pengaduk akan on dan akan mengstabilkan kembali, tetapi jika kondisi ph sesuai dari – maka pengadukakan off. Setelah itu pompa air On dan mengalirkan air atau larutan nutrisi kepada hidroponik tanaman stroberi. 20 Fungsi PID Gambar Flowchart Fungsi PID Dari gambar 3 .6 merupakan flowchart dari metode PID, pertama kali ialah inisialisasi, setelah itu sensor ph akan membaca nilai kadar ph pada larutan nutrisi dari bak yang tersedia selanjutnya akan dikirimkan pada wemos D1 R2. Sesudah sensor membaca nilai ph akan maka nilai tersebut akan disimpan pada variabel yang tersedia. Setelah itu variabel akan diolah memakai metode PID. Maka akuator atau servo 1 & 2 akan menyala sesuai kondisi yang di perlukan. Jika ph air sesuai dengan nilai yang ditentukan maka pompa air akan menyala. Metode PID disini menggunakan ziegler-nichlos open loop. Langkah pertama yaitu melakukan inisialisai nilai Kp, Ki, dan Kd dan memasukan 2 nilai set point 6,4 dan 5,8. Istate yaitu nilai jumlah dari error sebelumnya nilai variabel istate ke 21 1 =0 dengan nilai error err sekarang yang dikalikan dengan dt. Untuk proses mendapatkan nilai PID pertama harus mencari nilai Kp dikali dengan error, Ki dikali dengan istate, dan terakhir mencari nilai dari Kd dikali dengan selisi error saat ini dengan nilai error sebelumnya errp. Nilai error sebelumnya atau errp diawali diberi nilai 0 karena dianggap bahwa pada saat sistem dimulai tidak ada nilai error. Nilai errp di update dengan nilai sama dengan err. Setelah menjumlahkan nilai Kp, Ki, dan Kd dari kedua setpoint yaitu 6,4 dan 5,8 maka mendapatkan nilai PID untuk nilai setpoint 6,4 servoout dan nilai setpoint 5,8 servout2 dapat diketahui. Jika nilai kondisi ph lebih dari 6,5 maka nilai PID setpoint 6,4 akan dijalankan. Untuk nilai servoout lebih kecil dari 50 maka servoout = 50 dan jika nilai servoout lebih kecil besar 100 maka nilai servoout = 100. Jika kondisi ph kurang dari 5,8 maka nilai PID setpoint 5,8 akan dijalankan. Untuk nilai setpoint 5,8 servoout2 dapat diketahui. Jika nilai servoout2 lebih kecil dari 100 maka servoout2 = 100 dan jika nilai servoout2 lebih besar dari 50 maka nilai servoout2 = 50. 22 BAB IV HASIL DAN PEMBAHASAN Pada bab ini penulis akan membahas yang akan terjadi di pengujian setiap komponen guna mengetahui apakah sensor atau komponen yang digunakan berfungsi dengan baik atau tidak. Pengetesan parameter ini digunakan untuk melakukan analisis untuk memenuhi tujuan dan menjawab rumusan masalah. Pengujian komponen meliputi pengujian Wemos D1 R2, pengujian kalibrasi sensor Ph, pengujian servo, dan pengujian pengaduk motor & pompa. Pengujian Wemos D1 R2 Pada penelitian ini dilakukan percobaan terhadap wemos D1 R2 dengan cara memasukan program simpel memakai aplikasi Arduino IDE. Tujuan dari percobaan ini untuk mengecek apakah wemos D1 R2 berfungsi dengan baik atau tidak, agar saat digunakan pada penelitian tidak ada kerusakan dan dapat berjalan dengan baik. Berikut merupakan alat yang digunakan dalam pengujian ini, diantaranya 1. Laptop / PC. 2. Wemos D1 R2. 3. USB Type B. 4. Aplikasi Arduino IDE. Berikut adalah langkah – langkah percobaan Wemos D1 R2, sebagai berikut a. Menyalakan Laptop / PC yang dipergunakan. b. Mensambungkan Laptop/ PC pada Wemos D1 R2 dengan memakai USB type b. c. Membuka aplikasi Arduino IDE di Laptop. d. Sesudah selesai mengetik program di software Arduino IDE, maka tekan tombol verify pada bagian kiri atas. Ketika sudah di verify maka langkah selanjutnya tekan tombol upload untuk mengunggah program ke dalam Wemos D1 R2. 23 Pengujian Kalibrasi Sensor PH Pada penelitian ini dilakukan pengujian terhadap modul sensor ph, modul sensor ph yaitu berfungsi menjadi deteksi kadar ph yang terdapat di campuran nutrisi Hidroponik. Sensor ini bisa menciptakan nilai keluaran di serial monitor yang menunjukan kadar ph yang terdapat di campuran nutrisi. Tujuan dari percobaan ini untuk mengecek kinerja modul sensor ph apakah berfungsi dengan baik buat membaca kadar ph yang ada di campuran nutrisi maupun cairan asam atau basa. Berikut merupakan alat yang digunakan dalam percobaan ini, diantaranya 1. Laptop / PC. 7. Aplikasi Arduino IDE. Berikut ini adalah langkah – langkah pada prosedur pengujian modul sensor ph, sebagai berikut a. Menyalakan Laptop / PC b. Membuka aplikasi Arduino IDE pada Laptop / PC. Mengetik program sesuai perintah untuk sensor ph di aplikasi Arduino IDE. c. Setelah mengetik program, maka tekan tombol verify pada bagian kiri atas. d. Sesudah verify langkah selanjutnya menghubukan probe dan modul sensor ph ke pin data analog, power dan ground sesuaikan yang sudah ditentukan di Wemos D1 R2 memakai kabel jumper. e. Setelah menghubungkan maka langkah selanjutnya yaitu upload program ke wemos D1 R2 dengan menekan tombol upload di bagian kanan atas. Ketika keluar kata done uploading. Layar serial monitor menampilkan hasil nilai ph. f. Memasasukan sensor di 2 campuran ph buffer yang tersedia yaitu ph buffer 4,01 dan ph buffer 6,86 untuk mengamati nilai pada jendela serial monitor. 24 Pengujian MQTT Pada percobaan ini merupakan pengujian protokol Iot yaitu MQTT. Iot MQTT disini berfungsi sebagai monitoring ph air yang berada di larutan nutrisi. Tujuan dari pengujian ini untuk mengecek apakah bisa memonitoring dari jarak jauh melalui Handphone dengan menggunakan aplikasi IotMQTTPanel. Berikut merupakan alat yang digunakan dalam pengujian ini, diantaranya 1. Laptop / PC. Berikut ini adalah langkah – langkah pada prosedur pengujian MQTT sebagai berikut a. Menyambungkan Wemos D1 R2, sensor ph, dan kabel jumper. Dengan cara menghubungkan kabel jumper ke pin Wemos D1 R2 dan sensor ph. b. Menyalakan Laptop / PC c. Menyambungkan wemos D1 R2 ke Laptop / PC dengan memakai kabel USB type b. d. Membuka aplikasi Arduino IDE pada Laptop / PC isi program perintah di Arduino IDE. Sebelum upload sebaiknya di verify agar tidak dapat kesalahan pada program. Setelah di verify maka tekan tombol upload ke Wemos D1 R2. e. Setelah itu lihat pada serial monitor apakah Wemos D1 R2 sudah terkoneksi dengan Wifi / Internet yang tersedia. f. Sesudah terkoneksi maka buka handphone untuk membuka aplikasi IotMQTTPanel agar bisa memonitoring dari jarak jauh melalui Handphone atau device lain. Pengujian Seluruh Komponen Sistem 25 Pada percobaan ini mendapatkan pengujian nilai pengutipan data pada otomaasi metode yang telah dirancang. Memproses input hingga menghasilkan output yang bisa mengubah sebuah kadar ph yang terdapat di larutan nutrisi Hidroponik Nutrient Film Technique NFT pada tananaman stroberi. Tujuan dari percobaan ini yaitu untuk mengatur nilai ph di larutan nutrisi Hidroponik di metode yang di rancang. Menggunakan cara pengambilan data serta kalibrasi dari sensor ph supaya memperoleh kondisi nilai ph agar sesuai dengan keperluan tumbuhan stroberi. Berikut merupakan alat yang dipergunakan dalam percobaan ini, diantaranya jumper sesuai yang di tentukan oleh perancang. b. Menyalakan Laptop / PC c. Menghubungkan Wemos D1 R2 pada Laptop / PC dengan kabel USB type B. d. Mengklik Aplikasi Arduino IDE pada Laptop / PC. Membuat program perintah ke aplikasi Arduino IDE. Setelah itu klik verify jika tidak ada 26 kesalahan di program atau syntax maka klik upload untuk mengunggah program pada Wemos D1 R2. e. Melihat hasilnya pembacaan sensor bisa terlihat pada jendela serial monitor. Hasil Pengujian Wemos D1 R2 Pada percobaan Wemos D1 R2 menggunakan aplikasi Arduino IDE dapat menghasilkan pengujian pada Gambar 4 .1 dibawah ini yang sudah diupload. Setelah “Done Uploading” keluar yang menunjukan program sukses terunggah ke Wemos D1 R2 serta tidak ada kesalahan di program. Gambar Hasil Pengujian Wemos D1 R2 Program yang sudah diupload pada Wemos D1 R2 merupakan sebuah program untuk perancangan alat Tugas Akhir ini. Untuk menghubungkan Wemos D1 R2 melalui Laptop / PC memakai Port USB agar dapat menerima data yang dikirim melalui serial monitor di aplikasi Arduino IDE. Hasil Pengujian Kalibrasi Sensor ph Pada percobaan kalibrasi sensor ph memakai buffer ph 4,0 dan buffer ph 6,8 pada setiap – setiap tempat yang tersedia, setelah itu akan dibandingkan memakai ph meter. Sehingga didapatkan hasil perbandingan antara sensor ph dan ph meter. Nilai dari tegangan dari ph buffer 4,0 ini didapatkan menggunakan rumus yang 27 berada di bab 2 dan mendapatkan hasil nya yaitu 2,21 dan 1,91. Setelah mendapatkan nilai tegangan selanjutnya mencari nilai sensor ph menggunakan rumus yaitu maka mencari nilai error dengan rumus yaitu 𝑒𝑟𝑟𝑜𝑟 = ph meter−ph sensor ph meter 𝑥100% 11 Hasil tersebut bisa ditunjukan pada Tabel dan Tabel Tabel Pengujian kalibrasi sensor ph buffer 4,0 Waktudetik Ph sensor Ph meter Error % 0 3,9 4,0 0,02 28 Pada Tabel ialah hasil percobaan ph buffer dari memakai sensor ph yang tersambungkan sama Wemos D1 R2 setelah itu dibandingkan dengan ph meter sehingga dapat nilai hasil seperti pada tabel Percobaan ini dilakukan dengan waktu 15 menit dan hasil dari pengetesan sensor ph yang dilakukan pada ph buffer 4,0 menghasilkan nilai rata – rata error sebesar 0,02%. Tabel Pengujian kalibrasi sensor ph buffer 6,8 Waktudetik Ph sensor Ph meter Error % 0 6,7 6,8 0,01 29 900 6,7 6,8 0,01 Rata – rata 0,01% Pada Tabel 4. 2 ialah hasil dari pengetesan ph buffer 6,8 memakai sensor ph yang dihubungkan Wemos D1 R2 setelah itu dibandingkan memakai ph meter sehingga mendapatkan hasil data seperti tabel 4. 2. Percobaan dilakukan dengan waktu 15 menit dan hasil dari pengetesan sensor ph yang dilakukan pada ph buffer 6,8 menghasilkan nilai rata – rata error sebesar 0,01%. Hasil ph Nutrisi AB Mix Hasil dari pengujian dari perubahan ph didapatkan nilai kondisi ph air murni yang dicampurkan dengan nutrisi AB Mix. Mendapatkan perubahan kondisi ph yang awalnya ph airnya setelah dikasih AB mix dan diaduk dengan motor dc. Tabel ph nutrisi AB mix No Waktu detik ph Sensor Tabel 4. 3 yaitu perubahan ph air dari kondisi air murni ke air larutan nutrisi. Kondisi awal air murni yaitu 7,2 ketika sesudah di beri nutrisi AB mix menjadi ph 6,0 atau sesuai dengan ph yang diinginkan oleh tanaman stroberi yang berada di hidroponik NFT. Hasil Pengujian MQTT Pada pengujian protokol MQTT ini untuk memonitoring jarak jauh. MQTT disini berfungsi sebagai monitoring ph air yang berada di larutan nutrisi. Tujuan dari pengujian ini untuk mengecek apakah bisa memonitoring dari jarak jauh melalui Handphone dengan menggunakan aplikasi IotMQTTPanel. 30 MQTT monitoring ph buffer 4,01. Gambar Hasil MQTT ph buffer 4,01 MQTT monitoring ph buffer 6,86. Gambar Hasil MQTT ph buffer 6,86. 31 Hasil Pengujian Tanaman Stroberi Pada pengujian tanaman stroberi tingkat keberhasilan nya yaitu bisa tumbuh dengan maksimal. Pengujian tanaman ini menggunakan 3 pot, pengujian tanaman ini dilakukan selama 4 hari tetapi pada tiap hari di uji selama 6 jam. Tabel merupakan tabel pertumbuhan tanaman stroberi Tabel 4. 4 Hasil pengujian tumbuhan stoberi Tanggal POT I POT II POT III 14 – 12 – 2021 10,8 cm 6,4 cm 11,6 cm 15 – 12 – 2021 11 cm 6,9 cm 11,8 cm 17 – 12 – 2021 11,4 cm 7,4 cm 12,2 cm Pada Tabel pengujian tumbuhan stroberi berhasil tumbuh dari hari ke hari selama menanam 4 hari. Pot 1 10,8 cm pada hari pertama dan tumbuh hingga 11,4 cm pada hari ke 4. Pot 2 6,4 cm pada hari pertama dan tumbuh hingga 7,4 cm pada hari ke 4 . Pot 3 11,6 cm pada hari pertama dan tumbuh hingga 12,2 cm pada hari ke 4. Tumbuhan bisa bertumbuh dikarenakan ph yang sesuai dengan kebutuhan tumbuhan dan juga larutan nutrisi yang diberikan. Hasil Pengujian Keseluruhan Sistem Gambar 4. 4 Grafik Pengujian ph setpoint 6,4 32 Pada Gambar merupakan pengujian ph setpoint 6,4 ini komponen berjalan dengan sesuai diinginkan. Pengujian ph sensor menggunakan PID Zichler Nicholas Open Loop mendapatkan L dead time sebesar 3 dan T waktu tunda sebesar 22,44. Setelah mendapatkan nilai L dan T, selanjutnya mencari nilai Kp, Ti dan Td rumusnya sebagai berikut Kp = x T/L 12 Kp = x 22,44/3 13 Kp = x 7,48 = 8,976 Ti = 2L 14 Ti = 23 = 6 Td = 15 Td = = 1,5 Setelah mendapatkan nilai Kp = 8,976 Ti = 6 Td = 1,5. Untuk mencari nilai dari Ki dan Kd rumusnya sebagai berikut Ki = Kp / Ti 16 Ki = 8,976 / 6 = 1,496 Kd = Kp x Td 17 Kd = 8,976 x 1,5 = 13,464 Gambar 4. 5 Pengujian ph setpoint 5,8 33 Pada Gambar merupakan pengujian ph setpoint 5,8 ini komponen berjalan dengan sesuai diinginkan. Pengujian ph sensor menggunakan PID Zichler Nicholas Open Loop mendapatkan L dead time sebesar 3 dan T waktu tunda sebesar 23,76. Setelah mendapatkan nilai L dan T, selanjutnya mencari nilai Kp, Ti dan Td rumusnya sebagai berikut Kp = x T/L 18 Kp = x 23,76/3 19 Kp = x 7,92 = 9,504 Ti = 2L 20 Ti = 23 = 6 Td = 21 Td = = 1,5 Setelah mendapatkan nilai Kp = 9,504 Ti = 6 Td = 1,5. Untuk mencari nilai dari Ki dan Kd rumusnya sebagai berikut Ki = Kp / Ti 22 Ki = 9,504 / 6 = 1,584 Kd = Kp x Td 23 Kd = 9,504 x 1,5 = 14,256 Gambar 4. 6 Hasil setpoint PID 6,4 34 Gambar 4. 7 Hasil PID setpoint 5,8 Dari nilai pada Gambar dan Gambar dapat mengetahui respon yang dihasilkan untuk mencapai nilai ph stabil dengan menggunakan Kp, Ki, Kd yang sudah didapatkan dengan metode Ziegler Nichlos tipe 1. Pada pengujian ini setpoint 6,4 diberi nilai Kp = 8,976, Ki = 1,496, Kd = 13,464 dan setpoint 5,8 diberi nilai Kp = 9,504 Ki = 1,584 Kd = 14,256. Pengujian dilakukan dengan mengatur nilai setpoint ph 6,4 dan 5,8. Cara kerja nya yaitu jika nilai ph lebih dari 6,5 maka PID setpoint 6,4 akan berkerja dan jika dibawah 5,8 maka PID setpoint 5,8 yang akan berkerja. Pada Gambar grafik dengan warna biru nilai ph, warna orange nilai setpoint 6,5, dan warna abu – abu nilai setpoint 5,8. Tabel 4. 5 Hasil PID setpoint 6,4 No 35 Tabel 4. 6 Hasil PID setpoint 5,8 No 36 BAB V PENUTUP Kesimpulan Hasil dari pengujian untuk kerja Rancang bangun hidroponik NFT, diperoleh beberapa kesimpulan, yaitu 1. Penggunaan sensor ph harus di kalibrasi. Setelah dikalibrasi menguji memakai ph buffer 4,0 dan 6,8. Nilai dari pengukuran ph sensor dan ph meter menghasilkan rata rata error sebesar 0,02 % dan 0,01%. Ph sensor akan mengecek apakah nilai ph lebih dari 6,5 atau kurang dari 5,8. Jika lebih dari 6,5 maka servo 2 down akan aktif dan pengaduk aktif dan jika kurang dari 5,8 maka servo 1 up akan aktif dan pengaduk aktif. Ketika kondisi sesuai yang di inginkan atau sesuai setpoint maka pompa akan menyala servo 1, servo 2 dan pengaduk tidak menyala. 2. Penerapan sistem kendali PID dengan metode Ziegler Nichols tipe 1 untuk setpoint 6,4 mendapatkan nilai L= 3 dan T=22,44 dan nilai setpoint 5,8 mendapatkan nilai L = 3 dan T = 23,76 . Setelah itu setpoint 6,4 mendatkan nilai Kp = 8,976 Ki = 1,496 Kd = 13,464 dan setpoint 5,8 mendatkan nilai Kp = 9,504 Ki = 1,584 Kd = 14,256. Nilai setpoint 6,4 overshoot sebesar 8,37% rise time 20 s, serta settling time selama 45 s. Nilai setpoint 5,8 overshoot sebesar 6,89% rise time 25 s, serta settling time selama 55 s. 3. Pada pengujian sistem monitoring untuk ph sensor menggunakan protokol komunikasi MQTT menghasilkan error sebesar 0%. Saran Saran untuk pengembangan Tugas Akhir yang lebih baik. Ada beberapa saran untuk Tugas Akhir berikut, yaitu 1. Ditambahkan bak penguras secara otomatis. 2. Kedepannya menambahkan pengisi larutan nutrisi automatis. 3. Kedepannya semoga bukan hanya bisa memonitoring tetapi bisa mengontrol dari jarak jauh. 37 DAFTAR PUSTAKA .Muh,R., Available at [Diakses 28 September 2021]. Baringbing, 2020. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN. Indonesia. Fauziansyah, F., 2015. DESAIN KENDALI PID DENGAN METODA ZIEGLER-NICHOLS DAN COHEN-COON MENGGUNAKAN MATLAB DAN ARDUINO PADA PLANT LEVEL AIR, Bandung Politeknik Negeri Bandung. Hakim, W. R., 2020. RANCANG BANGUN SISTEM HIDROPONIK NFT Nutrient Film Technique PADA PEMBIBITAN TANAMAN STROBERI MENGGUNAKAN METODE FUZZY, Surabaya Ira Puspasari, Y. T. H., 2018. Otamasi Sistem Hidroponik Wick Terintegrasi Pada Pembibitan Tomat Ceri. JNTETI, Volume VII, pp. 1-8. Nainggolan, F. S., 2018. RANCANGAN SISTEM IRIGASI HIDROPONIK NFT Nutrient Film Technique PADA BUDIDAYA TANAMAN PAKCOY. Issue BIDANG STUDI TEKNIK SUMBER DAYA AIR DEPARTEMEN TEKNIK SIPIL
Konfigurasi loop terbuka tidak memantau atau mengukur kondisi sinyal outputnya karena tidak ada umpan balik feedback. Dalam tutorial sebelumnya tentang Sistem Elektronik, kami melihat bahwa suatu sistem dapat didefinisikan sebagai kumpulan subsistem yang mengarahkan atau mengendalikan sinyal input untuk menghasilkan kondisi output yang diinginkan. Fungsi dari setiap sistem elektronik adalah untuk secara otomatis mengatur output dan menyimpannya dalam nilai input atau "set point" sistem yang diinginkan. Jika input sistem berubah karena alasan apa pun, output sistem harus merespons sesuai dan mengubahnya sendiri untuk mencerminkan nilai input baru. Demikian juga, jika terjadi sesuatu yang mengganggu output sistem tanpa perubahan pada nilai input, output harus merespons dengan kembali ke nilai yang ditetapkan sebelumnya. Di masa lalu, sistem kontrol listrik pada dasarnya adalah manual atau apa yang disebut Sistem Loop Terbuka dengan sangat sedikit fitur kontrol otomatis atau umpan balik yang dibangun untuk mengatur variabel proses sehingga dapat mempertahankan tingkat atau nilai output yang diinginkan. Misalnya, pengering pakaian listrik. Tergantung pada jumlah pakaian atau seberapa basah mereka, pengguna atau operator akan mengatur timer pengontrol untuk mengatakan 30 menit dan pada akhir 30 menit pengering akan secara otomatis berhenti dan mati meskipun pakaian di mana masih basah atau lembab. Dalam hal ini, tindakan kontrol adalah operator manual yang menilai kebasahan pakaian dan mengatur prosesnya pengering. Jadi dalam contoh ini, pengering pakaian akan menjadi sistem loop terbuka karena tidak memantau atau mengukur kondisi sinyal output, yang merupakan kekeringan pakaian. Maka keakuratan proses pengeringan, atau keberhasilan mengeringkan pakaian akan tergantung pada pengalaman pengguna operator. Namun, pengguna dapat menyesuaikan atau menyempurnakan proses pengeringan sistem kapan saja dengan menambah atau mengurangi waktu pengontrol waktu pengeringan, jika mereka berpikir bahwa proses pengeringan asli tidak akan terpenuhi. Misalnya, menambah pengontrol waktu hingga 40 menit untuk memperpanjang proses pengeringan. Pertimbangkan diagram blok loop terbuka berikut. Sistem Pengeringan Loop Terbuka Kemudian sistem loop terbuka, juga disebut sebagai sistem non-umpan balik non-feedback, adalah jenis sistem kontrol kontinu di mana output tidak memiliki pengaruh atau efek pada tindakan kontrol sinyal input. Dengan kata lain, dalam sistem kontrol loop terbuka, output tidak diukur atau “diumpankan kembali” untuk dibandingkan dengan input. Oleh karena itu, sistem loop terbuka diharapkan dengan setia mengikuti perintah input atau set point-nya terlepas dari hasil akhirnya. Juga, sistem loop terbuka tidak memiliki pengetahuan tentang kondisi output sehingga tidak dapat memperbaiki sendiri kesalahan yang bisa terjadi ketika nilai preset melayang, bahkan jika ini menghasilkan penyimpangan besar dari nilai preset. Kerugian lain dari sistem loop terbuka adalah bahwa mereka tidak dilengkapi dengan baik untuk menangani gangguan atau perubahan kondisi yang dapat mengurangi kemampuannya untuk menyelesaikan tugas yang diinginkan. Misalnya, pintu pengering terbuka dan panas hilang. Pengontrol waktu terus berlanjut terlepas selama 30 menit penuh tetapi pakaian tidak dipanaskan atau dikeringkan pada akhir proses pengeringan. Ini karena tidak ada informasi yang diumpankan untuk menjaga suhu konstan. Kemudian kita dapat melihat bahwa kesalahan sistem loop terbuka dapat mengganggu proses pengeringan dan karenanya membutuhkan perhatian pengawas tambahan dari pengguna operator. Masalah dengan pendekatan kontrol antisipatif ini adalah bahwa pengguna perlu sering melihat suhu proses dan mengambil tindakan kontrol korektif setiap kali proses pengeringan menyimpang dari nilai yang diinginkan dari pengeringan pakaian. Jenis kontrol loop terbuka manual yang bereaksi sebelum kesalahan sebenarnya terjadi disebut Feed forward Control. Tujuan dari kontrol umpan maju, juga dikenal sebagai kontrol prediktif, adalah untuk mengukur atau memprediksi gangguan loop terbuka yang potensial dan mengkompensasinya secara manual sebelum variabel terkontrol menyimpang terlalu jauh dari titik setel semula. Jadi untuk contoh sederhana kami di atas, jika pintu pengering terbuka maka akan terdeteksi dan ditutup sehingga proses pengeringan berlanjut. Jika diterapkan dengan benar, penyimpangan dari pakaian basah ke pakaian kering pada akhir 30 menit akan menjadi minimal jika pengguna menanggapi situasi kesalahan pintu terbuka dengan sangat cepat. Namun, pendekatan umpan maju ini mungkin tidak sepenuhnya akurat jika sistem berubah, misalnya penurunan suhu pengeringan tidak diperhatikan selama proses 30 menit. Kemudian kita dapat mendefinisikan karakteristik utama dari "sistem loop terbuka" sebagai Tidak ada perbandingan antara nilai aktual dan yang diinginkan. Sistem loop terbuka tidak memiliki pengaturan diri atau tindakan kontrol atas nilai output. Setiap pengaturan input menentukan posisi operasi tetap untuk pengontrol. Perubahan atau gangguan dalam kondisi eksternal tidak menghasilkan perubahan output langsung kecuali jika pengaturan pengontrol diubah secara manual. Setiap sistem loop terbuka dapat direpresentasikan sebagai beberapa blok bertingkat dalam rangkaian atau diagram blok tunggal dengan input dan output. Diagram blok sistem loop terbuka menunjukkan bahwa jalur sinyal dari input ke output mewakili jalur linier tanpa loop umpan balik dan untuk semua jenis sistem kontrol input diberikan penandaan θi dan output θo. Secara umum, kita tidak perlu memanipulasi diagram blok loop terbuka untuk menghitung fungsi transfer yang sebenarnya. Kita hanya dapat menuliskan hubungan atau persamaan yang tepat dari setiap diagram blok, dan kemudian menghitung fungsi transfer akhir dari persamaan ini seperti yang ditunjukkan. Sistem Loop Terbuka Fungsi Transfer dari masing-masing blok adalah Fungsi transfer keseluruhan diberikan sebagai Kemudian Gain Open-loop diberikan hanya sebagai Ketika G merupakan Fungsi Transfer dari sistem atau subsistem, ia dapat ditulis ulang sebagai G s = θo s/θi s Sistem kontrol loop terbuka sering digunakan dengan proses yang membutuhkan urutan kejadian dengan bantuan sinyal "ON-OFF". Misalnya mesin cuci yang mengharuskan air untuk dinyalakan "ON" dan kemudian ketika penuh diaktifkan "OFF" diikuti oleh elemen pemanas yang dinyalakan "ON" untuk memanaskan air dan kemudian pada suhu yang sesuai diaktifkan "OFF", dan seterusnya. Jenis kontrol loop terbuka "ON-OFF" ini cocok untuk sistem di mana perubahan beban terjadi secara lambat dan proses kerjanya sangat lambat, sehingga diperlukan perubahan yang jarang terjadi pada tindakan kontrol oleh operator. Ringkasan Sistem Kontrol Loop Terbuka Kita telah melihat bahwa pengontrol dapat memanipulasi inputnya untuk mendapatkan efek yang diinginkan pada output suatu sistem. Salah satu jenis sistem kontrol di mana output tidak memiliki pengaruh atau efek pada tindakan kontrol sinyal input disebut sistem loop terbuka. Sistem loop terbuka didefinisikan oleh fakta bahwa sinyal atau kondisi output tidak diukur atau “diumpankan” untuk perbandingan dengan sinyal input atau titik setel sistem. Oleh karena itu sistem loop terbuka umumnya disebut sebagai "sistem non-umpan balik". Juga, karena sistem loop terbuka tidak menggunakan umpan balik feedback untuk menentukan apakah output yang diperlukan tercapai, itu "mengasumsikan" bahwa tujuan yang diinginkan dari input berhasil karena tidak dapat memperbaiki kesalahan yang dibuatnya, sehingga tidak dapat mengkompensasi setiap gangguan eksternal ke sistem. Kontrol Motor Loop Terbuka Jadi misalnya, anggap pengontrol motor DC seperti yang ditunjukkan. Kecepatan putaran motor akan tergantung pada tegangan yang disupply ke amplifier pengontrol oleh potensiometer. Nilai tegangan input bisa sebanding dengan posisi potensiometer. Jika Potensiometer dipindahkan ke bagian atas resistansi, tegangan positif maksimum akan diberikan ke penguat amplifier yang mewakili kecepatan penuh. Demikian juga, jika wiper potensiometer dipindahkan ke bagian bawah resistansi, tegangan nol akan disupply mewakili kecepatan yang sangat lambat atau berhenti. Kemudian posisi slider potensiometer mewakili input, θi yang diperkuat oleh amplifier pengontrol untuk menggerakkan motor DC proses pada kecepatan yang ditetapkan N yang mewakili output, θo dari sistem. Motor akan terus berputar pada kecepatan tetap yang ditentukan oleh posisi potensiometer. Karena jalur sinyal dari input ke output adalah jalur langsung yang tidak membentuk bagian dari loop apa pun, gain keseluruhan sistem akan nilai-nilai berjenjang dari gain individu dari potensiometer, amplifier, motor dan beban. Jelas diinginkan bahwa kecepatan output motor harus identik dengan posisi potensiometer, memberikan gain keseluruhan sistem sebagai kesatuan. Namun, gain individu dari potensiometer, penguat dan motor dapat bervariasi dari waktu ke waktu dengan perubahan tegangan atau suhu supply, atau beban motor dapat meningkat yang mewakili gangguan eksternal ke sistem kontrol motor loop terbuka. Tetapi pengguna pada akhirnya akan menyadari perubahan dalam kinerja sistem perubahan dalam kecepatan motor dan dapat memperbaikinya dengan menambah atau mengurangi sinyal input potensiometer sesuai untuk mempertahankan kecepatan asli atau yang diinginkan. Keuntungan dari jenis "kontrol motor loop terbuka" ini adalah bahwa itu berpotensi murah dan sederhana untuk diterapkan membuatnya ideal untuk digunakan dalam sistem yang didefinisikan dengan baik adalah hubungan antara input dan output langsung dan tidak dipengaruhi oleh gangguan luar. Sayangnya sistem loop terbuka jenis ini tidak memadai karena variasi atau gangguan pada sistem mempengaruhi kecepatan motor. Maka diperlukan bentuk kontrol lain. Dalam tutorial selanjutnya tentang Sistem Elektronik, kita akan melihat efek mengumpankan kembali beberapa sinyal output ke input sehingga kontrol sistem didasarkan pada perbedaan antara nilai aktual dan yang diinginkan. Jenis sistem kontrol elektronik ini disebut Kontrol Loop Tertutup.
Salah satu materi yang terkenal dalam sistem kendali atau system control adalah sistem control open loop sistem kendali lingkar terbuka dan sistem control close loop sistem kendali lingkar tertutup.Kedua sistem tersebut sangat berperan dalam mendeskripsikan prinsip keja suatu perlatan atau sistem. Ada yang outputnya tidak berpengaruh terhadap aksi control dan ada juga outputnya yang meberikan feedback umpan balik terhadap aksi pada kesempatan kali ini kami akan menjelaskan pengertian dan sistem control open loop sistem kendali lingkar terbuka dan sistem control close loop sistem kendali lingkar tertutup.Pengertian Sistem Control Open LoopSistem control open loop sistem kendali lingkar terbuka adalah suatu sistem yang keluarannya output tidak memberikan pengaruh terhadap aksi kontrol. Sehingga output yang dihasilkan sistem ini tidak dapat dijadikan umpan balik feedback ke dalam masukan sistem memperkecil kesalahan dari keluaran output maka sistem loop terbuka ini memanfaatkan kalibrasi atau dengan cara mengetahui hubungan antara masukan dan keluaran. Sehingga apabila memberikan suatu masukan maka hasilnya sudah dapat Sistem Loop Terbuka Open Loop1. TelevisiDari gambar sistem open loop televisi dapat dijelaskan sebagai berikut Input Input pada sistem open loop televisi berupa sumber listrik AC yang dihubungkan ke televisiController Saklar atau tombol on-off televisi / remot berfungsi sebagai kontrol atau mengatur ON / OFF nya sebuah televisiPlant Televisi berperan sebagai Plant beban atau objek yang dikendalikan On / Off nya tv merupakan hasil keluaran output dari sistem open loop Mesin CuciDari gambar sistem open loop mesin cuci dapat dijelaskan sebagai berikut Input Input pada sistem open loop mesin cuci berupa sumber listrik yang dihubungkan ke mesin Saklar timer berfungsi sebagai kontrol atau mengatur waktu ON / OFF nya mesin / dinamo / motor listrik mesin Motor atau dinamo mesin cuci berperan sebagai Plant atau objek yang dikendalikan oleh controller saklar timerOutput ON atau OFF nya mesin cuci merupakan hasil keluaran output dari sistem open loop Traffic Light Lampu Lalu Lintas OtomatisDari gambar sistem open loop traffic light dengan menggunakan mikrokontroller dapat dijelaskan sebagai berikut Input Input pada sistem open loop traffic light berupa sumber listrik yang dihubungkan ke mikrokontroller yang dimiliki oleh traffic Mikrokontroller berperan sebagai controller yang mengatur waktu nyala dan tarnsisi lampu merah, kuning dan Lampu merah, kuning dan hijau berperan sebagai Plant beban atau objek yang dikendalikan oleh controller mikrokontrollerOutput ON atau OFF nya lampu merah, kuning dan hijau merupakan hasil keluaran output dari sistem open loop Kipas AnginDari gambar sistem open loop kipas angin dapat dijelaskan sebagai berikut Input Input pada sistem open loop traffic light berupa sumber listrik yang dihubungkan ke saklar kipas saklar berperan sebagai controller yang mengatur ON / OFF dan juga kecepatan kipas anginPlant Motor listrik / dinamo kipas angin menjadi plant atau objek yang dikendalikan oleh ON, OFF dan kecepatan putaran kipas angin merupakan hasil keluaran output dari sistem open loop Juga 7 Contoh Loop Terbuka open LoopPengertian Sistem Control Close LoopSistem control close loop sistem kendali lingkar tertutup adalah suatu sistem yang keluarannya outputnya memberikan pengaruh terhadap aksi kontrol. Sehingga kesalahan yang dihasilkan pada keluaran dapat menjadi feedback umpan balik ke dalam masukan sistem akan selalu memberikan feedback ke masukan sampai hasil keluarannya sesuai yang diinginkan diatur. Jadi keluaran akan berhenti memberikan feedback apabila nilai / hasilnya sudah Sistem Loop Tertutup Close Loop1. Setrika ListrikDari gambar sistem close loop setrika dapat dijelaskan sebagai berikut Input Input masukan pada sistem close loop setrika berupa sumber listrik yang dihubungkan ke Selector switch saklar pilih berperan sebagai controller untuk On-Off setrika dan juga untuk memilih tingkat suhu setrika yang Elemen pemanas pada setrika berperan sebagi beban / objek yang diatur oleh selector Thermostat berperan sebagai sensor untuk membaca dan mengatur tingkatan suhu yang telah diatur oleh selector switch. Apabila nilai suhu output sesuai dengan yang diatur maka thermostat tidak akan bekerja untuk memberikan feedback. Namun apabila nilai suhu output tidak sesuai dengan yang diatur maka thermostat akan memberikan feedback kepada sistem sampai nilai suhu sesuai yang Tingkatan suhu panas yang diinginkan menjadi hasil keluaran output pada sistem close loop setrika ACBaca Juga 13 Komponen AC dan FungsinyaDari gambar sistem close loop AC dapat dijelaskan sebagai berikut Input Input masukan pada sistem close loop AC berupa sumber listrik yang dihubungkan ke Remot dan PCB control berperan sebagai controller. Remot digunakan untuk mengatur suhu dari AC sedangkan PCB control menerima perintah dari Remot kemudian mengontrol peralatan pendingin Peralatan pendingin AC seperti Kompresor, Kondensor dan Evaporator berperan sebagai plant Objek yang dikendalikan oleh PCB Thermistor berperan sebagai sensor untuk membaca dan mengatur tingkatan suhu pada AC. Apabila nilai suhu output sesuai dengan yang diatur pada remote maka thermistor tidak akan bekerja untuk memberikan feedback kepada PCB kontrol. Namun apabila nilai suhu output tidak sesuai dengan yang diatur di remot maka thermistor akan memberikan feedback kepada PCB control agar mengatur kerja Kompresor, Kondensor dan Evaporator sehingga di dapatkan nilai suhu yang Tingkatan suhu yang diatur di remot menjadi hasil keluaran output pada sistem close loop AC Lampu Otomatis Sensor LDR Light Dependent ResistorSedikit penjelasan mengenai LDR LDR merupakan sebuah komponen listrik yang berfungsi sebagai saklar yang prinsip kerjanya bergantung dengan intensitas cahaya di sekitarnya. Sehingga LDR berfungsi sebagai saklar dan gambar sistem close loop lampu otomatis dapat dijelaskan sebagai berikut Input Input masukan pada sistem close loop lampu otomatis berupa sumber listrik yang dihubungkan ke lampu dan sensor Saklar LDR berperan sebagai controller yang mengatur aliran listrik menuju ke lampu sehingga mengendalikan ON / OFF nya Lampu berperan sebagai Plant atau objek yang dikendalikan oleh komponen Sensor LDR berperan sebagai sensor yang membaca intensitas cahaya di sekitarnya. Sehingga apabila intensitas cahayanya kurang maka sensor LDR akan memberikan feedback kepada saklar LDR untuk menyalakan ketikan intensitas cahayanya tinggi maka sensor LDR akan memberikan feedback kepada saklar untuk mematikan lampu. Output ON / OFF nya lampu plant menjadi output dari sistem close loop pada lampu otomatis sistem LDR Rice CookerBaca Juga Prinsip Kerja Rice CookerDari gambar sistem close loop setrika dapat dijelaskan sebagai berikut Input Input masukan pada sistem close loop setrika berupa sumber listrik yang dihubungkan ke Selector switch saklar pilih berperan sebagai controller untuk menentukan mode rice cooker, yaitu mode cook memasak atau mode warm pemanasPlant Elemen pemanas atau heater pada rice cooker berperan sebagi beban / objek yang diatur oleh selector switch. . Terdapat 2 heater pada rice cooker, yaitu H1 untuk mode cook dan H2 untuk mode Thermostat berperan sebagai sensor untuk membaca dan mengatur tingkatan suhu pada mode cook dan warmDi dalam rice cooker terdapat 2 buah thermostat yaitu T1 dan T2. T1 membaca suhu tertinggi dan mengalihkan mode cook ke warm. Sedangkan T2 membaca dan memebrikan sinyal ke H2 untuk menjaga suhu di mode Ketika memasak nasi maka selector switch memilih mode cook sehingga H1 bekerja. Ketika suhu mencapai nilai tertinggi nasi telah masak maka T1 mendeteksi sehingga mengatur mode menjadi Perpindahan dari mode cook ke warm berarti nasi telah masak menjadi hasil keluaran output pada sistem close loop rice cooker Juga 7 Contoh Close Loop Loop TertutupBaca Juga Pengertian, Komponen, Kelebihan Kekuranagn Sistem Open Loop dan Close LoopJadi itulah materi mengenai pengertian dan beberapa contoh sistem open loop sistem kendali lingkar terbuka dan contoh sistem close loop sistem kendali lingkar tertutup. Untuk materi lebih lengkap mengenai sistem open loop dan close loop kalian bisa cek link di atas. Semoga apa yang telah kami bagikan dapat bermanfaat bagi kalian. Terima kasih.
Definisi Sistem Kendali Dalam kehidupan sehari-hari, sadar atau tanpa kita sadari kita terus bertemu dengan suatu perangkat atau peralatan yang kerjanya terkendali secara otomatis baik terkendali sebagian maupun seluruhnya, seperti saat mengendarai mobil, saat menggunakan mesin cuci, menggunakan handphone, dan banyak lagi yang lainnya, singkatnya sistem yang digunakan untuk membuat suatu perangkat menjadi terkendali sesuai dengan keinginan manusia ini biasanya disebut sebagai sistem kendalicontrol system. Sistem kendali tidak hanya sistem kendali buatan manusia, tetapi juga banyak sekali sistem kendali yang terjadi secara natural mulai dari elemen terkecil tubuh manusia hingga kompleksitas alam semesta. Seberapa penting manusia memerlukan sistem kendali?, tanpa sistem kendali, apakah mungkin ditemukan mobil dan pesawat terbang, penerbangan ke luar angkasa? Satelit komunikasi? Smartphone? Dan masih banyak hal yang masih bisa dipertanyakan. Sehingga dapat dimengerti seberapa penting dan seberapa signifikan kehadiran bidang ilmu sistem kendali dalam perkembangan kehidupan manusia. Control system What they are? Apa sintem kendali itu? definisi 1. Sistem adalah suatu susunan, set, atau sekumpulan sesuatu yang terhubung atau terkait sedemikian rupa sehingga membentuk sesuatu secara keseluruhan, definisi 2. Sistem adalah susunan komponen fisik yang terhubung atau terkait sedemikian rupa sehingga membentuk atau bertindak sebagai seluruh unit dalam satu kesatuan. Sedangkan kata kontrol atau kendali biasanya diartikan mengatur, mengarahkan, atau perintah. Dari kedua kedua makna kata sistem dan kontrol/kendali, sistem kendali adalah suatu susunan komponen fisik yang terhubung atau terkait sedemikian rupa sehinga dapat memerintah, mengarahkan, atau mengatur diri sendiri atau sistem lain[[1]. Di dalam dunia engineering danscience sistem kendali cenderung dimaksudkan untuk sistem kendali dinamis. Sistem kendali terdiri dari sub-sistem dan proses atau plants yang disusun untuk mendapatkan keluaranoutput dan kinerja yang diinginkan dari input yang diberikan[2]. Gambar 1 di bawah ini menununjukkan blok diagram untuk sistem kendali paling sederhana, sistem kendali membuat sistem dengan input yang diberikan menghasilkan output yang diharapkan. Gambar 1. Deskripsi sederhana sistem kendali[2] Sebagai contoh, misalnya penggunaan elevatorlift, pada saat tombol yang menunjukkan nomor lantai tujuan ditekan, maka elevator akan bergerak naik/turun menuju lantai tujuan tersebut. Tombol bernomor lantai tujuan yang ditekan tersebut merupakan input yang menunjukkan output yang kita inginkan. Sistem ini merupakan fungsi step yang ditunjukkan pada gambar 2, kinerjaelevator dapat dilihat dari kurva elevator response. Gambar 2. Elevator response[2] Dua kinerja utama terukur yang dapat dilihat adalah, pertama, respons transient, kedua, steady-state error. Pada contoh elevator ini, kenyamanan dan waktu yang dibutuhkan untuk sampai pada tujuan pengguna bergantung pada respons transient. Jika respon ini terlalu cepat, kenyamanan penumpang yang dikorbankan, jika terlalu lambat, waktu yang diperlukan juga semakin besar. Steady-state error juga merupakan indikator kinerja yang sangat penting karena keselamatan penumpang dan kenyamanan akan dikorbankan jika output tidak sesuai yang diinginkan. Klasifikasi Sistem Kontrol/Kendali Secara umum, sistem kontrol dapat diklasifikasikan sebagai berikut Sistem Kontrol Manual dan Otomatik Sistem Lingkar Terbuka Open Loop dan Lingkar Tertutup Closed Loop Sistem Kontrol Kontiniu dan Diskrit Menurut sumber penggerak Elektrik, Mekanik, Pneumatik, dan Hidraulik Penjelasan singkat dari jenis-jenis sistem kontrol diatas akan dibahas berikut ini. Sistem Kontrol Manual adalah pengontrolan yang dilakukan oleh manusia yang bertindak sebagai operator, sedangkan Sistem Kontrol Otomatik adalah pengontrolan yang dilakukan oleh peralatan yang bekerja secara otomatis dan operasinya dibawah pengawasan manusia. Sistem Kontrol Manual banyak ditemukan dalam kehidupan sehari-hari seperti pada pengaturan suara radio, televisi, cahaya layer televisi, pengaturan aliran air melalui keran, pengendalian kecepatan kendaraan, dan lain-lain. Sedangkan Sistem Kontrol Otomatik banyak ditemui dalam proses industri baik industri proses kimia dan proses otomotif, pengendalian pesawat, pembangkit tenaga listrik dan lain-lain. Sistem Kontrol Lingkar Terbuka Open Loop adalah sistem pengontrolan di mana besaran keluaran tidak memberikan efek terhadap besaran masukan, sehingga variable yang dikontrol tidak dapat dibandingkan terhadap harga yang diinginkan. Sedangkan Sistem Kontrol Lingkar Tertutup Closed Loop adalah sistem pengontrolan dimana besaran keluaran memberikan efek terhadap besaran masukan, sehingga besaran yang dikontrol dapat dibandingkan terhadap harga yang diinginkan. Selanjutnya, perbedaan harga yang terjadi antara besaran yang dikontrol dengan harga yang diinginkan digunakan sebagai koreksi yang merupakan sasaran pengontrolan. Sistem Kendali Terbuka Open Loop Dan Sistem Kendali Tertutup Close Loop Sistem Kendali terbuka Open Loop Seperti yang telah disebutkan diatas bahwa sistem kontrol loop terbuka adalah suatu sistem yang keluarannya tidak mempunyai pengaruh terhadap aksi kontrol. Artinya, sistem kontrol terbuka keluarannya tidak dapat digunakan sebagai umpan balik dalam masukkan. Gambar 3. Sistem Kontrol Loop Terbuka Dalam suatu sistem kontrol terbuka, keluaran tidak dapat dibandingkan dengan masukan acuan. Jadi, untuk setiap masukan acuan berhubungan dengan operasi tertentu, sebagai akibat ketetapan dari sistem tergantung kalibrasi. Dengan adanya gangguan, sistem control terbuka tidak dapat melaksanakan tugas yang sesuai diharapkan. Sistem kontrol terbuka dapat digunakan hanya jika hubungan antara masukan dan keluaran diketahui dan tidak terdapat gangguan internal maupun eksternal. Ciri – Ciri Sistem Kontrol Loop Terbuka Sederhana Harganya murah Dapat dipercaya Kurang akurat karena tidak terdapat koreksi terhadap kesalahan Berbasis waktu Contoh Aplikasi Sistem Loop Terbuka Pengontrol lalu lintas berbasis waktu Mesin cuci Oven listrik Tangga berjalan Rolling detector pada bandara Sistem Kontrol Tertutup Close Loop Sistem Kontrol loop tertutup adalah sistem kontrol yang sinyal keluarannya mempunyai pengaruh langsung pada aksi pengontrolan. Sistem kontrol loop tetrtutup juga merupakan sistem control berumpan balik. Sinyal kesalahan penggerak, yang merupakan selisih antara sinyal masukan dan sinyal umpan balik yang dapat berupa sinyal keluaran atau suatu fungsi sinyal keluaran atau turunannya. Diumpankan ke kontroler untuk memperkecil kesalahan dan membuat agar keluaran sistem mendekati harga yang diinginkan. Dengan kata lain, istilah “loop tertutup” berarti menggunakan aksi umpan balik untuk memperkecil kesalahan sistem. Gambar 4. Sistem Loop Tertutup Gambar diatas menunjukan hubungan masukan dan keluaran dari sistem kontrol loop tertutup. Jika dalam hal ini manusia bekerja sebagai operator, maka manusia ini akan menjaga sistem agar tetap pada keadaan yang diinginkan, ketika terjadi perubahan pada sistem maka manusia akan melakukan langkah-langkah awal pengaturan sehingga sistem kembali bekerja pada keadaan yang diinginkan. Berikut ini adalah komponen pada sistem kendali tertutup Input masukan, merupakan rangsangan yang diberikan pada sistem kontrol, merupakan harga yang diinginkan bagi variabel yang dikontrol selama pengontrolan. Harga ini tidak tergantung pada keluaran sistem Output keluaran,respons, merupakan tanggapan pada sistem kontrol, merupakan harga yang akan dipertahankan bagi variabel yang dikontrol, dan merupakan harga yang ditunjukan oleh alat pencatat Beban/Plant, merupakan sistem fisis yang akan dikontrol misalnya mekanis, elektris, hidraulik ataupun pneumatic . Alat kontrol/controller, merupakan peralatan/ rangkaian untuk mengontrol beban sistem. Alat ini bisa digabung dengan penguat Elemen Umpan Balik, menunjukan/mengembalikan hasil pencatan ke detector sehingga bisa dibandingkan terhadap harga yang diinginkan di stel Error Detector alat deteksi kesalahan, merupakan alat pendeteksi kesalahan yang menunjukan selisih antara input masukan dan respons melalui umpan balik feedback path Gangguan merupakan sinyal-sinyal tambahan yang tidak diinginkan. Gangguan ini cenderung mengakibatkan harga keluaran berbeda dengan harga masukanya, gangguan ini biasanya disebabkan oleh perubahan beban sistem, misalnya adanya perubahan kondisi lingkungan, getaran ataupun yang lain. Contoh aplikasi sistem kendali tertutup Servomekanisme Sistem pengontrol proses Lemari Es Pemanas Air Otomatik Kendali Termostatik AC Contoh Aplikasi Sistem Kendali Terbuka Open Loop dan Close Loop Aplikasi Sistem Kendali Terbuka Open Loop Pada Mesin Cuci Penggilingan pakaian, pemberian sabun, dan pengeringan yang bekerja sebagai operasi mesin cuci tidak akan berubah hanya sesuai dengan yang diinginkan seperti semula walaupun tingkat kebersihan pakaian sebagai keluaran sistem kurang baik akibat adanya factor-faktor yang kemungkinan tidak di prediksi sebelumnya. Gambar 5. Operasi Mesin Cuci Aplikasi Sistem Kendali Tertutup Close Loop pada Pendingin Udara Ac Masukan dari sistem AC adalah derajat suhu yang diinginkan oleh pemakai. Keluaranya berupa udara dingin yang akan mempengaruhi suhu ruangan sehingga suhu ruangan diharpakan akan sama dengan suhu yang diinginkan. Dengan memberikan umpan balik berupa derajat suhu ruangan setelah diberikan aksi udara dingin, maka akan didapatkan kesalahan errordari derajat suhu actual dengan derajat suhu yang diinginkan. Adanya keslahan ini membuat kontroler berusaha memperbaikinya, sehingga didapatkankesalahan yang semakin mengecil. Gambar 6. Proses Umpan Balik Pendingin Udara Referensi Agustian, Indra. 2013. Definisi Sistem Kendali. 04 juni. Diakses Februari 10, 2015. Thalib, Muhamad Fadhlan. 2014. Sistem Kontrol Loop Terbuka dan Tertutup. 10 Juni. Diakses Februari 10, 2015.
contoh aplikasi close loop